Name: .

True/False 1

Answer whether the following statements are true or false and briefly explain your answer.

a) [TRUE/FALSE] If A is Turing-recognizable and \overline{A} is Turing-recognizable, then \overline{A} is Turing-decidable. [5 pts]

True. We could create a decider for \overline{A} by running the recognizers for A and \overline{A} in parallel.

b) [TRUE/FALSE] Let A be an NP-Hard problem. A poly-time solution to A means that all NP-Hard problems are solvable in polynomial time. [5 pts]

False. This would solve all problems in NP in poly-time, but some NP-hard problems may be harder than (and therefore not poly-time reducible to) others.

c) [TRUE/FALSE] A decision problem A is NP-Hard if and only if SAT $\leq_p A$. [5 pts]

True. Problems are NP-hard if every problem in NP is reducible to them, and SAT \in NP. Furthermore, since every problem in NP is poly-time reducible to SAT, there is no way for SAT to be poly-time reducible to a problem that was not NP-hard.

d) [TRUE/FALSE] There exists a pushdown automaton to decide every context-free language.

[5 pts]

True. By definition, a language is context-free if and only if some pushdown automaton exists to decide it.

2 Proofs

a) Let the operator \diamond be defined as follows:

$$A \diamond B = \{ st \mid s \in A \text{ and } t \in B \text{ and } |s| = |t| \}$$

Show that Turing-recognizable languages are closed under the \diamond operator.

[10 pts]

Assume that A and B are Turing-recognizable languages. Then there exist machines M_A and M_B that recognize them. We can construct a two-tape machine that decides $A \diamond B$ as follows:

M = "On input w:

- (a) If w contains an odd number of characters, REJECT
- (b) Copy every other character starting with the second to tape 2, marking each as we go.
- (c) Remove all marked characters from tape 1
- (d) Nondeterministically run M_A on the contents of tape 1 and M_B on the contents of tape 2 in parallel.
 - i. If both machines accept, ACCEPT
 - ii. If either machine rejects, REJECT"

b) Let $A = \{\langle D \rangle \mid D \text{ is a DFA that doesn't accept any string containing an odd number of 1s}\}$. Show that A is decidable. [10 pts]

M = "On input $\langle D \rangle$:

- (a) Let $C = \{w \mid w \text{ contains an odd number of ones}\}$. Construct a machine D' that decides $L(D) \cap C$
- (b) Mark the start state of D'.
- (c) Repeat until no new states are marked:

i. Mark any state in D^\prime reachable from a marked state

- (d) If any final state in D' is marked, REJECT
- (e) Accept"

- c) Let $\text{COMP}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)} \}$. Show that COMP_{TM} is undecidable. [10 pts] We can create a mapping reduction from A_{TM} as follows: $F = \text{``On input } \langle M, w \rangle$:
 - (a) Construct a machine M_1 that decides \emptyset
 - (b) Construct a machine M_2 as follows: $M_2 =$ "On input x:
 - i. Simulate M on w.
 - A. If M accepts w, ACCEPT x
 - B. If M rejects w, REJECT x"
 - (c) Output $\langle M_1, M_2 \rangle$ "

- d) Let DOUBLESAT = {⟨Φ⟩ | Φ is a Boolean formula with (at least) two different satisfying assignments}. Show that DOUBLESAT ∈ NP. [10 pts]
 We can show that DOUBLESAT ∈ NP by constructing a poly-time deterministic verifier for it.
 Let c₁ and c₂ be truth assignments for the variables in Φ.
 We know that SAT is NP-Complete. This means that SAT ∈ NP, and there exists a poly-time deterministic verifier for SAT. Let n be the number of variables in Φ.
 - V = "On input $\langle Phi, c_1, c_2 \rangle$:(a) If $c_1 = c_2$, REJECTO(n)(b) Run $\langle \Phi, c_1 \rangle$ through a verifier for SAT. If this verifier rejects, REJECTPoly-time(c) Run $\langle \Phi c_2 \rangle$ through a verifier for SAT. If this verifier rejects, REJECTPoly-time(d) ACCEPT"O(1)